報告人:姬傑 (南京航空航天大學)
報告題目:Existence, uniqueness and smoothing effect for spatially homogeneous Landau-Coulomb equation in $H^{-\f12}$ space with polynomial tail
報告摘要:We demonstrate that the spatially homogeneous Landau-Coulomb equation exhibits global well-posedness in the space $H^{-\f12,\sss}_3\cap L^1_{7}\cap L\log L$ with $\sss>1/2$. Additionally, we furnish several quantitative assessments regarding the smoothing estimates in weighted Sobolev spaces for various initial data configurations. Consequently, we confirm the conjecture that the solution possesses a $C^\infty$ smoothing effect for any positive time, similar to the heat equation, despite the initial data having only a polynomial tail.
報告時間:2024年11月27日(星期三)16:30-18:00
報告地點:東32樓115會議室
邀請人:雷遠傑
報告人簡介:姬傑,講師,南京航空航天大學,博士畢業于清華大學。主要從事動理學方程的适定性與穩定性的研究。在 SIAM Journal on Mathematical Analysis等國際期刊上發表論文數篇。